3.2.24 \(\int \frac {\sec ^2(c+d x)}{(b \cos (c+d x))^{3/2}} \, dx\) [124]

Optimal. Leaf size=98 \[ -\frac {6 \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 b^2 d \sqrt {\cos (c+d x)}}+\frac {2 b \sin (c+d x)}{5 d (b \cos (c+d x))^{5/2}}+\frac {6 \sin (c+d x)}{5 b d \sqrt {b \cos (c+d x)}} \]

[Out]

2/5*b*sin(d*x+c)/d/(b*cos(d*x+c))^(5/2)+6/5*sin(d*x+c)/b/d/(b*cos(d*x+c))^(1/2)-6/5*(cos(1/2*d*x+1/2*c)^2)^(1/
2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*(b*cos(d*x+c))^(1/2)/b^2/d/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 98, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {16, 2716, 2721, 2719} \begin {gather*} -\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{5 b^2 d \sqrt {\cos (c+d x)}}+\frac {6 \sin (c+d x)}{5 b d \sqrt {b \cos (c+d x)}}+\frac {2 b \sin (c+d x)}{5 d (b \cos (c+d x))^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^2/(b*Cos[c + d*x])^(3/2),x]

[Out]

(-6*Sqrt[b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(5*b^2*d*Sqrt[Cos[c + d*x]]) + (2*b*Sin[c + d*x])/(5*d*(b*
Cos[c + d*x])^(5/2)) + (6*Sin[c + d*x])/(5*b*d*Sqrt[b*Cos[c + d*x]])

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rubi steps

\begin {align*} \int \frac {\sec ^2(c+d x)}{(b \cos (c+d x))^{3/2}} \, dx &=b^2 \int \frac {1}{(b \cos (c+d x))^{7/2}} \, dx\\ &=\frac {2 b \sin (c+d x)}{5 d (b \cos (c+d x))^{5/2}}+\frac {3}{5} \int \frac {1}{(b \cos (c+d x))^{3/2}} \, dx\\ &=\frac {2 b \sin (c+d x)}{5 d (b \cos (c+d x))^{5/2}}+\frac {6 \sin (c+d x)}{5 b d \sqrt {b \cos (c+d x)}}-\frac {3 \int \sqrt {b \cos (c+d x)} \, dx}{5 b^2}\\ &=\frac {2 b \sin (c+d x)}{5 d (b \cos (c+d x))^{5/2}}+\frac {6 \sin (c+d x)}{5 b d \sqrt {b \cos (c+d x)}}-\frac {\left (3 \sqrt {b \cos (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{5 b^2 \sqrt {\cos (c+d x)}}\\ &=-\frac {6 \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 b^2 d \sqrt {\cos (c+d x)}}+\frac {2 b \sin (c+d x)}{5 d (b \cos (c+d x))^{5/2}}+\frac {6 \sin (c+d x)}{5 b d \sqrt {b \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.03, size = 68, normalized size = 0.69 \begin {gather*} \frac {-6 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+6 \sin (c+d x)+2 \sec (c+d x) \tan (c+d x)}{5 b d \sqrt {b \cos (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^2/(b*Cos[c + d*x])^(3/2),x]

[Out]

(-6*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + 6*Sin[c + d*x] + 2*Sec[c + d*x]*Tan[c + d*x])/(5*b*d*Sqrt[b
*Cos[c + d*x]])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(365\) vs. \(2(110)=220\).
time = 0.11, size = 366, normalized size = 3.73

method result size
default \(-\frac {2 \sqrt {b \left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (24 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-12 \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-24 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+12 \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+8 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b}}{5 b^{2} \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \left (8 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-12 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \sqrt {b \left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )}\, d}\) \(366\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2/(b*cos(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-2/5*(b*(2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/b^2/sin(1/2*d*x+1/2*c)^3/(8*sin(1/2*d*x+1/2*c)^
6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)*(24*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6-12*EllipticE(c
os(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^4-
24*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/
2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^2+8*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-3*(sin(1/2*
d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*(-2*sin(1/2*d*x+1/
2*c)^4*b+sin(1/2*d*x+1/2*c)^2*b)^(1/2)/(b*(2*cos(1/2*d*x+1/2*c)^2-1))^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(b*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^2/(b*cos(d*x + c))^(3/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.11, size = 121, normalized size = 1.23 \begin {gather*} \frac {-3 i \, \sqrt {2} \sqrt {b} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 i \, \sqrt {2} \sqrt {b} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, \sqrt {b \cos \left (d x + c\right )} {\left (3 \, \cos \left (d x + c\right )^{2} + 1\right )} \sin \left (d x + c\right )}{5 \, b^{2} d \cos \left (d x + c\right )^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(b*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/5*(-3*I*sqrt(2)*sqrt(b)*cos(d*x + c)^3*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*si
n(d*x + c))) + 3*I*sqrt(2)*sqrt(b)*cos(d*x + c)^3*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x +
c) - I*sin(d*x + c))) + 2*sqrt(b*cos(d*x + c))*(3*cos(d*x + c)^2 + 1)*sin(d*x + c))/(b^2*d*cos(d*x + c)^3)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sec ^{2}{\left (c + d x \right )}}{\left (b \cos {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2/(b*cos(d*x+c))**(3/2),x)

[Out]

Integral(sec(c + d*x)**2/(b*cos(c + d*x))**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(b*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^2/(b*cos(d*x + c))^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\cos \left (c+d\,x\right )}^2\,{\left (b\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^2*(b*cos(c + d*x))^(3/2)),x)

[Out]

int(1/(cos(c + d*x)^2*(b*cos(c + d*x))^(3/2)), x)

________________________________________________________________________________________